본문 바로가기

배우고 싶은 강좌를 찾아보세요.

추천 강좌

    다국어 설정

    강좌소개

     

    강의소개

    머신러닝은 데이터에 존재하는 정보를 추출하거나 패턴을 학습하는 학문이고, 인공지능 기술에 가장 핵심적인 분야이다. 우선, 기본적인 선형대수 개념을 바탕으로 일반적인 최적화 및 온라인 최적화 문제를 다룬다. 그리고 머신러닝에서 주로 다루는 스코어 함수와 손실함수를 앞서 배운 최적화 프레임에 대입해본다. Chained function이 주어졌을 때 일반적으로 사용할 수 있는 computational graph와 backpropagation에 대해 학습하고 컨볼루션 및 순환 신경망에 어떻게 적용하는지를 학습한다.
    ※본 강좌는 영어로 진행됩니다.

      학습목표

    •  머신러닝의 수학적인 원리를 설명할 수 있다.
    •  원리를 바탕으로 알고리즘이 어떻게 설계되는지 설명할 수 있다.
    •  실제 문제에 알고리즘을 적용할 수 있다.

      연관 선수 강좌

    •  기본적으로 심화 강좌인 머신러닝을 제외한 4개 강좌의 학습 순서는 상관없음
    •  내용 구성을 고려하여 아래 도식으로 학습 순서를 제안

    연관 선수 강좌는 이론, 도구, 적용 부분으로 구성되어 있으며 먼저 이론으로는 데이터마이닝, 인공지능의 기초, 머신러닝 강좌가 있습니다. 이론 강좌 중 머신러닝은 인공지능의 기초 강좌 다음에 수강하는 것이 효과적입니다. 다음으로 도구 부분 과정으로 빅데이터와 머신러닝 소프트웨어가 있으며 적용 부분으로 빅데이터와 인공지능의 응용 강좌가 있습니다. 이론 강좌 중 머신러닝 강좌는 심화강좌이며 나머지 강좌는 기초강좌 입니다.

     

    교수소개

    송현오 교수 – 서울대학교 공과대학 컴퓨터공학부  

      학력

    •  한양대학교 기계공학 학사 (2006)
    •  Stanford University, Mechanical engineering 석사 (2008)
    •  University of California, Berkeley, Computer Science 석사 (2013)
    •  University of California, Berkeley, Computer Science 박사 (2014)

      주요경력

    • 2013: IBM Research (Research intern)
    • 2013: INRIA Grenoble (Visiting researcher)
    • 2014.11. – 2016.07.: Stanford University (Postdoctoral fellow)
    • 2016.07. – 2017.08.: Google Research (Research Scientist)
    • 2017.09. – 현재: 조교수, 서울대학교 컴퓨터공학부

      연구분야

    •  Machine learning, Optimization, Artificial intelligence
     

    강의구성

      총 9주차

     •  강좌계획표(Syllabus)

     

    강좌 계획표
    주차 개강일학습목표학습내용평가
    1주차 9월 1일머신러닝의 개념을 설명할 수 있다Logistics Introduction, Types of ML problems퀴즈
    2주차9월 8일 최적화 개념을 들어가기 앞서 필수 배경 지식을 설명할 수 있다.Basic linear algebra퀴즈
    3주차9월 15일일반적인 최적화 문제를 공식화하는 과정과 해를 찾는 과정을 설명할 수 있다.Descent methods, Coordinate descent퀴즈
    4주차9월 22일대량의 데이터를 바탕으로 최적화할 때 stochastic gradient descent를 이용해 해를 찾을 수 있다.Online method, Advanced online descent methods퀴즈
    5주차9월 29일데이터와 해당 레이블 사이의 패턴을 학습하도록 하는 스코어함수와 손실함수의 개념을 설명할 수 있다Score functions, Loss functions퀴즈
    6주차10월 6일손실함수를 미분 가능한 chained function 형태로 표현하고 최적화할 수 있다.Computational graphs, Neural networks퀴즈
    7주차10월 13일Spatial invariance를 위한 컨볼루션과 Temporal modeling을 위한 순환 신경망을 설명할 수 있다.Convolutional neural network, Pooling layer, Activation, Weight initialization퀴즈
    8주차10월 20일Environment와 반복적으로 interaction하면서 강화학습을 설명 할 수 있다.Reinforcement Learning, Value based model free reinforcement learning퀴즈
    9주차10월 27일  기말고사


      평가 비율 

    평가 비율
    퀴즈중간고사기말고사
    50%0%50%

    60점 충족 시 이수증 발부

      교재

    •  교재는 학습자료로 제공
         ※학습자료는 다운로드 가능

       강좌 소개 영상 

     

    운영방식

      수강신청 기간

    •  2020년 8월 18일(화) ~ 2020년 10월 19일(월)

      운영 기간

    •  2020년 9월 1일(화) ~ 2020년 11월 2일(월)

      개설 방식

    •  매주 1개 주차씩 순차 오픈

     

    조교소개

    정호산 조교(컴퓨터 공학부)

      정호산 조교(컴퓨터 공학부)

    메일 주소 : grazinglion@mllab.snu.ac.kr

     

    미리보기

    분야 공학 (컴퓨터 · 통신)

    난이도 전공기초

    운영기관 서울대학교

    이수증 미발급

    주차 9 주

    학습인정시간 6시간 00분 (03시간 53분)

    수강신청기간 20.08.18 ~ 20.10.19

    강좌운영기간 20.08.31 ~ 20.11.02

    전화번호 02-880-5385

    자막언어 -

    강좌언어 영어(en)

    추천강좌
    같은기관강좌